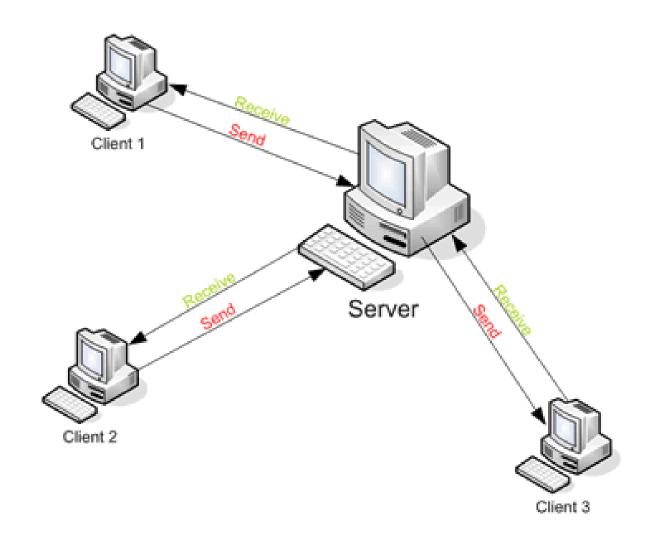
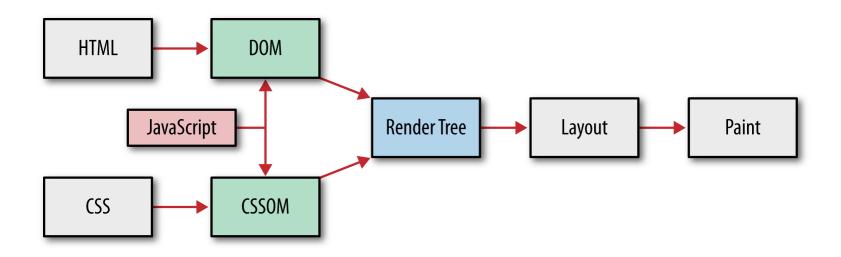

Geoprocessing in the Web Browser

Erin Hamilton
@ErinLHamilton
erin@erinhamilton.me


Introduction

Geoprocessing Operations



Michael Goodchild's *Towards an enumeration and classification of GIS functions* (1987), AAG's GIS & Technology Body of Knowledge (2006) and Jochen Albrecht's *Universal analytical GIS operations* — a task-oriented systematization of data structure-independent GIS functionality (1997).

Client-Server Model

A TINY Bit about Browsers

High Performance Browser Network http://chimera.labs.oreilly.com/books/123000000545

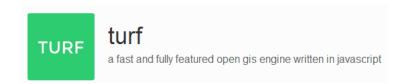
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Web Browsers

Browser	Browser Version	JavaScript Engine	Developed By
Chrome	33	V8	Google
Opera	20	V8	Google
Firefox	27	SpiderMonkey	Mozilla
Internet Explorer	11	Chakra	Microsoft
Safari	6	SquirrelFish Extreme (SFX) aka Nitro	Webkit

JavaScript Mapping Libraries

Mapbox



JavaScript Geoprocessing

ривыс 📙 bjornharrtell / jsts

chelm / shapely.js

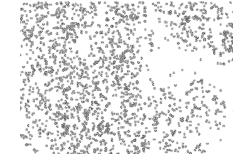
Geoprocessing Library

JTS Topology Suite

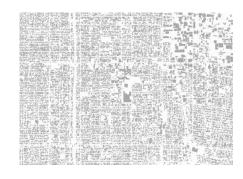
JSTS Topology Suite

Research Questions

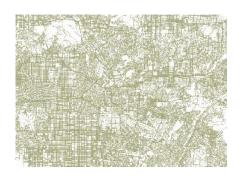
- 1. How do the various web browsers compare in geoprocessing performance?
- 2. How do client computers with different operating systems, processors, and memory sizes compare in geoprocessing performance?
- 3. How do the various client test configurations compare to server-side geoprocessing performance?
- 4. Are client geoprocessing times in an acceptable range for incorporation into web applications?


Methods

Testing Application Requirements


- 1. Common geoprocessing operations.
- 2. Suite of data sizes.
- 3. Common web browsers.
- 4. Various operating systems, processors, and memory sizes.
- 5. Same geoprocessing operations on a server for comparison.

Data – LA County GIS


ADDRESS POINTS

BUILDING FOOTPRINTS

ROAD CENTERLINES

10 Vertices – 100,000 Vertices 444 Bytes – 3.8 Megabytes

Natural Earth

Large scale data, 1:10m

Cultural Physical Raster

The most detailed. Suitable for making zoomed-in maps of countries and regions. Show the world on a large wall poster.

1:10,000,000 1" = 158 miles 1 cm = 100 km

Medium scale data, 1:50m

Cultural Physical Raster

Suitable for making zoomed-out maps of countries and regions. Show the world on a tabloid size page.

1:50,000,000 1" = 790 miles 1 cm = 500 km

Small scale data, 1:110m

Cultural Physical

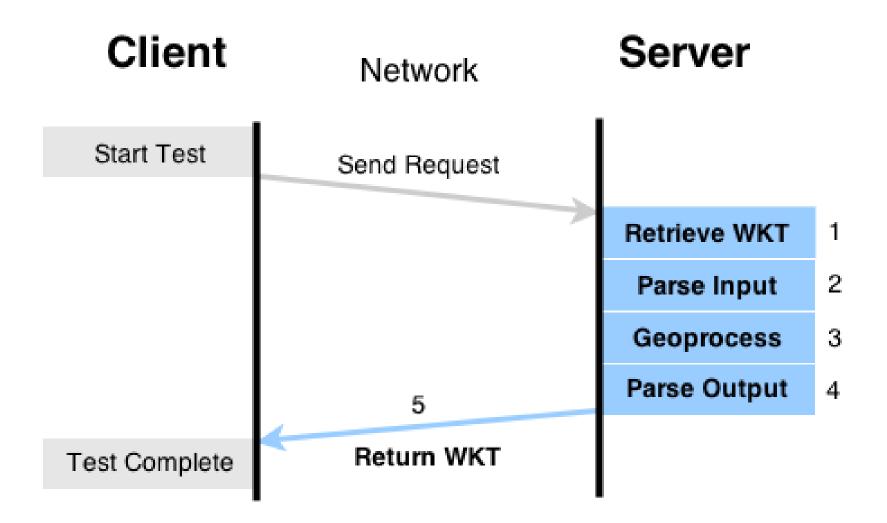
Suitable for schematic maps of the world on a postcard or as a small locator globe.

1:110,000,000 1" = 1,736 miles 1 cm = 1,100 km

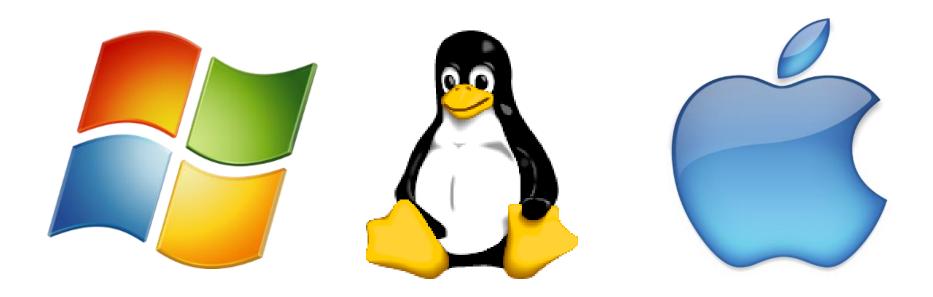
50,000+ vertices

10,000 - 50,000 vertices 10 - 10,000 vertices

Client – JavaScript Libraries


Server – Amazon EC2 Linux

Web Browsers



Browser	Browser Version	JavaScript Engine	Developed By
Chrome	33	V8	Google
Opera	20	V8	Google
Firefox	27	SpiderMonkey	Mozilla
Internet Explorer	11	Chakra	Microsoft
Safari	6	SquirrelFish Extreme (SFX) aka Nitro	Webkit

Client – Testing Platforms

Performance Measure

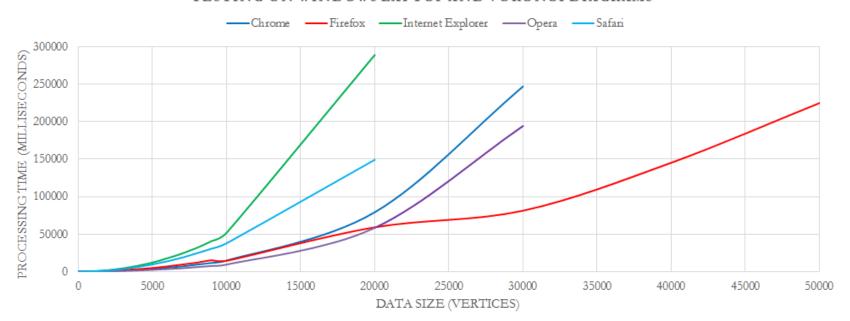
Faster processing times (milliseconds) == better performance

Browser unresponsive scripts, timeouts, crashing.

Performance determined by web usability metric:

1,000 Milliseconds 10,000 Milliseconds*

^{*}Grigorik, Ilya. High-performance Browser Networking. Sebastopol, CA: O'Reilly Media, Inc., 2013.

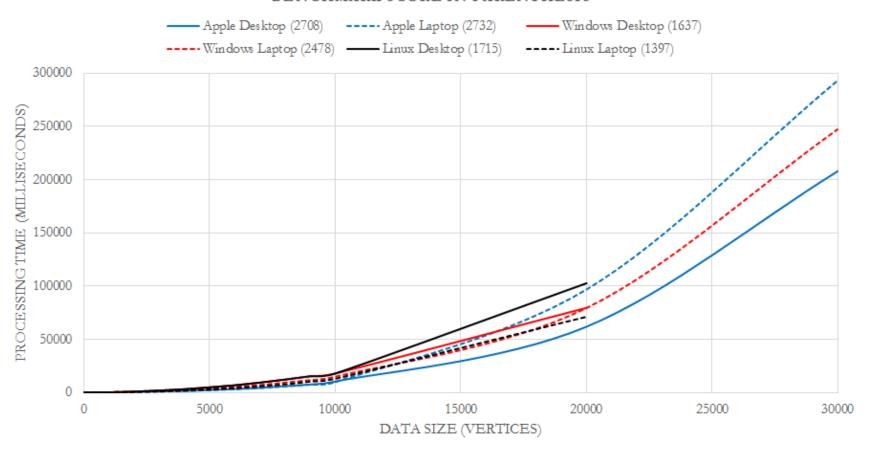

Results & Discussion

How do various web browsers compare in geoprocessing performance?

Web Browsers

WEB BROWSER PERFORMANCE ENDING AT 5 MIN.

TESTING ON WINDOWS LAPTOP AND VORONOI DIAGRAMS



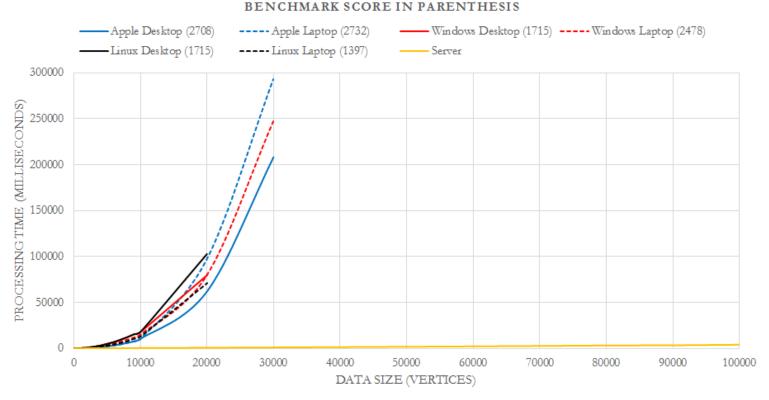
How do client computers with different operating systems, processors, and memory sizes compare in geoprocessing performance?

Client Platforms

CLIENT PLATFORM RESULTS ENDING AT 5 MINUTES

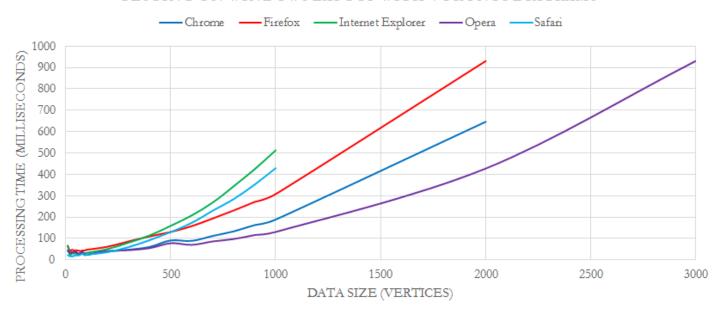
TESTING WITH CHROME AND VORONOI DIAGRAMS
BENCHMARK SCORE IN PARENTHESIS

How do the various client test configurations compare to server-side geoprocessing performance?


Browsers vs Server

WEB BROWSER AND SERVER PERFORMANCE ENDING AT 5 MIN. TESTING ON WINDOWS LAPTOP AND VORONOI DIAGRAMS

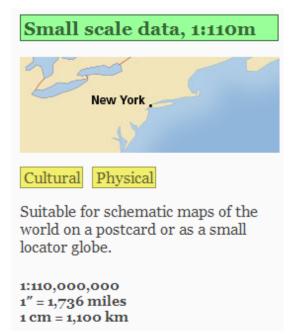
Client Platforms vs Server


CLIENT PLATFORM AND SERVER RESULTS ENDING AT 5 MIN. TESTING WITH CHROME AND VORONOI DIAGRAMS

Are client geoprocessing times in an acceptable range for incorporation into web applications?

Web Browsers

WEB BROWSER PERFORMANCE ENDING AT 1,000 MS TESTING ON WINDOWS LAPTOP WITH VORONOI DIAGRAMS


Browser	1 sec (vertices)	1 sec (kb)	10 sec (vertices)	10 sec (kb)
Chrome	2000	80	8000	318
Opera	3000	119	10000	398
Firefox	1000	40	7000	278
Internet Explorer	1000	40	4000	159
Safari	1000	40	5000	199

Conclusion

The server was faster than the client in all testing scenarios. *

*Single User

Web browsers limited to data about 7,000 to 10,000 vertices

Thank you!

Special thanks to the Trewartha Research Grant

www.erinhamilton.me/portfolio erin@erinhamilton.me @ErinLHamilton

Appendix

Client – Testing Platforms

Brand	Operating System (OS)	OS Version	Processor	CPU (GHz)	Memory (GB)
T 37400		7 11	I . 1/D) C /TD () '7		
Lenovo Y480	Windows	7 Home	Intel(R) Core(TM) i7-	2.3	8
		Premium Service	3610QM		
		Pack 1 (64-bit)			
Lenovo T61	Linux Mint	16 "Petra"	Intel Centrino Core 2	2.5	6
		Cinnamon (32-	Duo CPU		
		bit)			
MacBook Pro	Mac OS X	10.7.5	Intel Core i7	2.8	8
MacMini	Mac OS X	10.9.1	Intel Core i7	2.3	4
Custom Built	Linux Mint	13 "Maya"	2x Intel(R)	3.0	8
			Core(TM)2 Duo CPU		