Using RStudio + spsurvey to Create A Spatially Balanced Survey Frame for Estimating Streaked Horned Lark Abundance in the Willamette Valley

Presented by Matt Stevenson, CORE GIS **CUGOS Spring Fling** April 21, 2023



#### Why Did We Do This?

The Streaked Horned Lark *(Eremophila alpestris strigata)* is listed as **Endangered** by Washington State and **Threatened** by the US Federal government

#### **Two Important Questions**





Where are the larks?

#### How many larks are there?



#### **Creating a Spatially Balanced Sampling Frame**

- Random samples are not appropriate for extrapolation<sup>1</sup>
- Larks have opinions about habitat! So we used **unequal inclusion probabilities** and selected sites **proportionally based on the probability of habitat suitability**
- In our case, least suitable = 0.01, most suitable = 0.99

<sup>1</sup>See, for example, Perret et al, <u>Spatially balanced sampling methods are always more precise than random</u> <u>ones for estimating the size of aggregated populations</u>

### Suitable Habitat



#### **Unsuitable Habitat**



### How Do You Create a Spatially Balanced Sampling Frame?

 By using the Generalized Random Tessellation Stratified (GRTS)<sup>1</sup> algorithm, which is available in the <u>spsurvey</u> package for RStudio

<sup>1</sup>Foundational paper by Stevens and Olsen, <u>Spatially Balanced Sampling of Natural Resources</u>



grts = Ge

- Convert points to CSV and load into RStudio
  - srv\_pts\_v1\_df <- read.csv("zone\_1\_survey\_points\_v1.csv",header=TRUE,sep=",")</li>

- Convert points to CSV and load into RStudio
  - srv\_pts\_v1\_df <- read.csv("zone\_1\_survey\_points\_v1.csv",header=TRUE,sep=",")</li>
- Load spsurvey
  - library(spsurvey)

- Convert points to CSV and load into RStudio
  - srv\_pts\_v1\_df <- read.csv("zone\_1\_survey\_points\_v1.csv",header=TRUE,sep=",")</li>
- Load spsurvey
  - library(spsurvey)
- Create a geo object from the CSV, being sure to specify your CRS
  - srv\_pts\_v2\_geo <- st\_as\_sf(srv\_pts\_v2\_df, coords = c("X\_coord", "Y\_coord"), crs = 4326)</li>

- Convert points to CSV and load into RStudio
  - srv\_pts\_v1\_df <- read.csv("zone\_1\_survey\_points\_v1.csv",header=TRUE,sep=",")</li>
- Load spsurvey
  - o library(spsurvey)
- Create a geo object from the CSV, being sure to specify your CRS
  - srv\_pts\_v2\_geo <- st\_as\_sf(srv\_pts\_v2\_df, coords = c("X\_coord", "Y\_coord"), crs = 4326)</li>
- Transform GCS coordinates to UTM
  - o srv\_pts\_v2 = st\_transform(srv\_pts\_v2\_geo, crs = 6855)

- Convert points to CSV and load into RStudio
  - srv\_pts\_v1\_df <- read.csv("zone\_1\_survey\_points\_v1.csv",header=TRUE,sep=",")</li>
- Load spsurvey
  - o library(spsurvey)
- Create a geo object from the CSV, being sure to specify your CRS
  - srv\_pts\_v2\_geo <- st\_as\_sf(srv\_pts\_v2\_df, coords = c("X\_coord", "Y\_coord"), crs = 4326)</li>
- Transform GCS coordinates to UTM
  - o srv\_pts\_v2 = st\_transform(srv\_pts\_v2\_geo, crs = 6855)
- Select sites using GRTS and the habitat suitability value as the weight
  - selected\_sites\_srv\_pts\_v2 <- grts(srv\_pts\_v2, n\_base = 118, aux\_var = "max\_2021\_scaled")</li>

# How To use spsurvey and grts in RStudio, continued

- Display the results
  - sp\_plot(selected\_sites\_srv\_pts\_v2, srv\_pts\_v2, key.width = lcm(3))



# How To use spsurvey and grts in RStudio, continued

- Display the results
  - sp\_plot(selected\_sites\_srv\_pts\_v2, srv\_pts\_v2, key.width = lcm(3))
- Combine rows from the GRTS sample
  - proprob\_sites\_v2 <sp\_rbind(selected\_sites\_srv\_pts\_v2)



# How To use spsurvey and grts in RStudio, continued

- Display the results
  - sp\_plot(selected\_sites\_srv\_pts\_v2, srv\_pts\_v2, key.width = lcm(3))
- Combine rows from the GRTS sample
  - proprob\_sites\_v2 <sp\_rbind(selected\_sites\_srv\_pts\_v2)
- Finally, export to shapefile
  - st\_write(proprob\_sites\_v2, "S:/Projects/WV\_STHL/data/analysis/GRTS\_pr ocessing/proprob\_zone\_2.shp")



#### **Recap & Results**

The recovery zones were used as geographic strata:

| Zone                 | Survey Points |
|----------------------|---------------|
| North Willamette     | 28            |
| West Willamette      | 118           |
| Southeast Willamette | 118           |





### Larks were detected at 28 points (13%) - 55 individuals



