Using RStudio + spsurvey to Create A Spatially Balanced Survey Frame for Estimating Streaked Horned Lark Abundance in the Willamette Valley

Presented by Matt Stevenson, CORE GIS
CUGOS Spring Fling
April 21, 2023
Why Did We Do This?

The Streaked Horned Lark (*Eremophila alpestris strigata*) is listed as **Endangered** by Washington State and **Threatened** by the US Federal government.
Two Important Questions

Where are the larks?
How many larks are there?
Roads clipped to study area

Removed interstates, state highways, and all roads within UGAs

Removed roads outside recovery zones

Limited to areas below 800' elevation

1 = North Willamette
2 = Southeast Willamette
3 = West Willamette

Roads

Recovery Zones

Remove UGAs

Distribute Points
Creating a *Spatially Balanced* Sampling Frame

- Random samples are not appropriate for extrapolation1
- Larks have opinions about habitat! So we used *unequal inclusion probabilities* and selected sites *proportionally based on the probability of habitat suitability*
- In our case, least suitable = 0.01, most suitable = 0.99

1See, for example, Perret et al, *Spatially balanced sampling methods are always more precise than random ones for estimating the size of aggregated populations*.

Suitable Habitat
Unsuitable Habitat
How Do You Create a Spatially Balanced Sampling Frame?

- By using the Generalized Random Tessellation Stratified (GRTS)\(^1\) algorithm, which is available in the `spsurvey` package for RStudio.

\(^1\)Foundational paper by Stevens and Olsen, *Spatially Balanced Sampling of Natural Resources*
grts = Generalized Random Tessellation Stratified
How To use spsurvey and GRTS in RStudio

- Convert points to CSV and load into RStudio
 - `srv_pts_v1_df <- read.csv("zone_1_survey_points_v1.csv",header=TRUE,sep="","`)"
How To use spsurvey and GRTS in RStudio

- Convert points to CSV and load into RStudio
 - srv_pts_v1_df <- read.csv("zone_1_survey_points_v1.csv",header=TRUE,sep="\","")

- Load spsurvey
 - library(spsurvey)
How To use spsurvey and GRTS in RStudio

- Convert points to CSV and load into RStudio
 - `srv_pts_v1_df <- read.csv("zone_1_survey_points_v1.csv",header=TRUE,sep="\",")`

- Load spsurvey
 - `library(spsurvey)`

- Create a geo object from the CSV, being sure to specify your CRS
 - `srv_pts_v2_geo <- st_as_sf(srv_pts_v2_df, coords = c("X_coord", "Y_coord"), crs = 4326)`
How To use spsurvey and GRTS in RStudio

- Convert points to CSV and load into RStudio
 - `srv_pts_v1_df <- read.csv("zone_1_survey_points_v1.csv",header=TRUE,sep="","")`

- Load spsurvey
 - `library(spsurvey)`

- Create a geo object from the CSV, being sure to specify your CRS
 - `srv_pts_v2_geo <- st_as_sf(srv_pts_v2_df, coords = c("X_coord", "Y_coord"), crs = 4326)`

- Transform GCS coordinates to UTM
 - `srv_pts_v2 = st_transform(srv_pts_v2_geo, crs = 6855)`
How To use spsurvey and GRTS in RStudio

- Convert points to CSV and load into RStudio
 - `srv_pts_v1_df <- read.csv("zone_1_survey_points_v1.csv",header=TRUE,sep="","")`

- Load spsurvey
 - `library(spsurvey)`

- Create a geo object from the CSV, being sure to specify your CRS
 - `srv_pts_v2_geo <- st_as_sf(srv_pts_v2_df, coords = c("X_coord", "Y_coord"), crs = 4326)`

- Transform GCS coordinates to UTM
 - `srv_pts_v2 = st_transform(srv_pts_v2_geo, crs = 6855)`

- Select sites using GRTS and the habitat suitability value as the weight
 - `selected_sites_srv_pts_v2 <- grts(srv_pts_v2, n_base = 118, aux_var = "max_2021_scaled")`
How To use spsurvey and grts in RStudio, continued

- Display the results
 - `sp_plot(selected_sites_srv_pts_v2, srv_pts_v2, key.width = lcm(3))`
How To use spsurvey and grts in RStudio, continued

- Display the results
 - `sp_plot(selected_sites_srv_pts_v2, srv_pts_v2, key.width = lcm(3))`

- Combine rows from the GRTS sample
 - `proprob_sites_v2 <- sp_rbind(selected_sites_srv_pts_v2)`
How To use spsurvey and grts in RStudio, continued

- Display the results
 - `sp_plot(selected_sites_srv_pts_v2, srv_pts_v2, key.width = lcm(3))`

- Combine rows from the GRTS sample
 - `proprob_sites_v2 <- sp_rbind(selected_sites_srv_pts_v2)`

- Finally, export to shapefile
 - `st_write(proprob_sites_v2, "S:/Projects/WV_STHL/data/analysis/GRTS_processing/proprob_zone_2.shp")`
Recap & Results

The recovery zones were used as geographic strata:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Survey Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Willamette</td>
<td>28</td>
</tr>
<tr>
<td>West Willamette</td>
<td>118</td>
</tr>
<tr>
<td>Southeast Willamette</td>
<td>118</td>
</tr>
</tbody>
</table>

grts = Generalized Random Tessellation Stratified
Larks were detected at 28 points (13%) - 55 individuals

Lark Survey Results 2022
Number of Birds Detected
- 0
- 1
- 2
- 3
- 4

No. of points

No. of larks detected at point

Larks detected	Percent
0 | 87%
1 | 6%
2 | 4%
3 | 2%
4 | 1%
Questions?