
Recent Developments in
JTS and GEOS

Martin Davis CUGOS Spring Fling 2023

April 2023

Martin Davis

● Geospatial Engineer at

● Developer on:
○ JTS Topology Suite
○ GEOS
○ PostGIS
○ pg_featureserv

I Math & Geometry!

martin.davis@crunchydata.com

JTS Topology Suite

● Library for representing and processing vector geometry
● Written in Java
● Since 2001; now at version 1.19
● Open source, on GitHub
● License

○ EPL: Eclipse Public License
○ EDL: Eclipse Distribution License (BSD-style)

● Widely used in Java spatial applications

GEOS Geometry Library

● JTS port to C++ with a C API
● Open source, on GitHub
● License: GPL (GNU Public License)
● VERY widely used

Language Bindings
● Shapely (Python)
● R-sf
● GeoPHP
● GoGEOS
● Node-geos (Javascript)
● rgeos (Rust)

Databases
● PostGIS
● SpatialLite
● CockroachDB
● DuckDB
● MonetDB

Applications
● QGIS
● GDAL
● MapServer
● GRASS

Functionality Overview

● Provides the full OGC Simple Features for
SQL geometry specification:

○ Points, Linestring, Polygons, collections
○ Metrics: Length, Area, Distance
○ Predicates: intersects, contains, etc.; relate for DE-9IM
○ Overlay: intersection, union, difference, symDifference
○ Constructions: Convex Hull, Buffer

● Other functions:
○ Validation, Polygonization, Simplification, Linear

Referencing, Delaunay/Voronoi…

Circles

Maximum Inscribed Circle
● Largest circle inside a polygon

○ Furthest point from polygon boundary
● Iterative approximation - uses an accuracy distance tolerance

MaximumInscribedCircle(geom, accuracy);

Largest Empty Circle
● Largest circle containing no obstacles (lines / points)

○ Furthest point from obstacles
● Optional: constrain center to a boundary polygon

LargestEmptyCircle(geom, [boundary], accuracy);

Hulls

Convex Hull
● The unique convex polygon containing input vertices
● As per the Simple Features specification
● Works for all geometry types

ConvexHull(geom);

Concave Hull - Points
● A (possibly) concave polygon containing input vertices
● Many possible hulls, determined by param pctconvex

ConcaveHull(geom, pctconvex);

pctconvex= 1.0 0.6 0.4 0.0

Concave Hull - Points: How it works
● Build Delaunay Triangulation on points
● Sort triangles by longest edge length
● Remove triangles, until tolerance is reached

Pctconvex = 0.6 0.4 0.0

Concave Hull - Points, allowing holes
● Concave hull can contain holes

○ via optional parameter allow_holes = true

ConcaveHull(geom, pctconvex, true);

pctconvex = 0.6 = 0.5 = 0.25 = 0.0

Concave Hull - Polygons?
● Standard Concave Hull algorithms only support points
● Problem! Does not respect polygon boundaries

Concave Hull - Polygons
● New algorithm to compute Concave Hull for polygon(s)

○ constrained by polygon boundaries

Polygon Hull Simplification
● Computes Outer and Inner Hulls of polygonal geometry
● Preserves polygonal topology, including holes and MultiPolygons
● Parameter: vertex_fraction = fraction of vertices kept

Input Outer Hull Inner Hull

SimplifyPolygonHull(geom, vertex_fraction, is_outer);

Polygon Outer Hull VS Concave Hull
● Preserves Holes/MultiPolygon VS Single Polygon
● Parameter: Vertex Fraction VS Percent Convex

Outer Hull
Vertex Fraction = 0

Concave Hull
PctConvex = 0.2

Triangulations

Delaunay Triangulation
● Computes the Delaunay Triangulation of points
● Processes vertices only

○ does not respect polygon linework
○ does not handle holes or MultiPolygons

SELECT ST_DelaunayTriangles(geom);

Polygon Triangulation
● Computes the Constrained Delaunay Triangulation of polygons

○ respects polygon linework
○ handles holes and MultiPolygons

SELECT ST_TriangulatePolygon(geom);

Polygonal Coverages

Polygonal Coverages
● A set of non-overlapping polygons
● Many use cases

○ Cadastral parcels
○ Political jurisdictions
○ Land use
○ Geological regions
○ Etc, etc

● Can be represented as a full topological model
○ e.g. PostGIS Topology

● Another option…

Simple Polygonal Coverage
● Represent Polygonal Coverage as discrete polygons

○ A set of Polygons and MultiPolygons
○ Allows holes, disjoint regions
○ Implicit topology

● Advantages
○ Simple
○ Performant
○ Works with existing functions

Polygonal Coverage - Validity
● Coverage Validity required for:

○ Correct operation of coverage functions
○ Accurate modelling and analysis

● A set of polygons is a valid coverage if:
○ Polygons are valid
○ Polygons are non-overlapping

■ interiors do not intersect
○ Adjacent polygons are edge-matched

■ shared lines have identical vertices

X

X

Polygonal Coverage - Validation

● Tests if a set of valid polygons is a valid coverage
● For coverage-invalid polygons, reports invalid

sections of polygon boundary:
○ Overlapping edges
○ Non edge-matched adjacent edges

● For each polygon returns
○ Invalid: invalid edges (MultiLineString)
○ Valid: empty or null

CoverageValidate(geom[])
=> MultiLineString[]

Polygonal Coverage - Union
● Computes the union of a set of coverage polygons
● Aggregate function, returns polygonal geometry
● Very fast (can be 100x faster than general-purpose union)

CoverageUnion(geom[]) => MultiPolygon

Polygonal Coverage - Simplification
● Simplifies the boundaries of a set of coverage polygons
● Preserves topology; result is a valid coverage with identical structure

Size: 11,481 pts Size: 739 pts

CoverageSimplify(geom[], tolerance) => geom[]

Polygonal Coverage - Inner Simplification
● Simplifies the inside boundaries of a set of coverage polygons
● Preserves topology; result is a valid coverage with identical structure

CoverageSimplifyInner(geom[], tolerance) => geom[]

Future Work

● Polygonal Coverage functions
○ Find Gaps
○ Clean
○ Precision Reduce
○ Overlay

