by Karsten Vennemann **TERRA GIS** TERRESTRIAL ENVIRONMENT REGIONAL ANALYSIS

The web tool is part of a larger project

News

Home

Projekt -

Partner -

Kontakt

Mehr 👻

Gutes Klima für die Zukunftsstadt

Integrated planning of blue-green urban Infrastructures – Frankfurt and Stuttgart

Integrierte Planung für blau-grüne Infrastrukturen -Ein Leitfaden

Der Leitfaden ist ein Ergebnis des Forschungsprojekts "Integrierte Strategien zur Stärkung urbaner blau-grüner Infrastrukturen (INTERESS-I)", in dem Forscher:innen gemeinsam mit Fachleuten aus Verwaltung und Wirtschaft sowie der Stadtgesellschaften in Frankfurt am Main und Stuttgart die erforderlichen integrierten Strategien entwickelt und getestet haben.

- What the problem
- How to solve it
 - The Model
 - The Tool
 OpenLayers, MapServer, GDAL, PHP, Python, R and PostGIS
 - Show Time

O Punktberechnung (Grün - Wasserbedarf Vegetation)

Web Tool Wasserhaushalt Blau-Grüne Infrastrukturen

Climate Change challenges the survival of urban green, and it's ecosystem functions

How to prevent this ?

A model and

recommendations for irrigation to save water

Green calculation – over the course of a year Model factors determining Evapotranspiration

Simple model: 3 values for each factor

S			
	Sun exposition		
	S1 = 0.7	(shadow)	
	S2 = 1,0	(half shadow)	
	S3 = 1,3	(full sun)	

LGB same all year, using three 0.5 m² raster files as input, but S changes daily

Simplification to deal with **S**

Sun exposition

instead of 365 rasters for as many days using 73 pentads (5 day periods) for the year

further optimisation

- approach using ternary system (0,1,2)
- storing values of multiple pentads in one integer raster e.g. calculation for each raster cell for pentad [0 - 15] final_s = final_s + s(pentad[i]) * 3^(i)

Resulting in

total of 4 rasters storing ternary S values (pentads 1–16, 17-35, 36-54, and 55-73) created via an R-Script

The tool is based on

Spatial Postgre

OpenLayers Digitize area (e.g. green)

PostGIS Check if inside project area & intersects vegetation

Extract LGBS value from ternary raster Get frequency of the (possible 81) combinations LGBS occurrence in target area & write to matrix/csv

Create histograms of precipitation, irrigation and storage needs over the year for area/point

Web Tool Wasserhaushalt Blau-Grüne Infrastrukturen

TERRA GIS INTERESS-I

Fläche (Polygon) erstellen zur Berechnung (Grün oder Blau)
 Punktberechnung (Grün - Wasserbedarf Vegetation)

Grün - Berechnung für das Jahr 2022 (Wetter trocken) 🗸

 Summen für letzte Gebietsberechnung - Blau

 Straßenabfluß in m³: 36953
 Straßenfläche in m²: 56503

 Dachabfluß in m³: 22603
 Dachfläche in m²: 34561

Summen für letzte Gebietsberechnung - Grün Jährliche Bewässerungsmenge (I): 88877414 (~88877 m³)

Speicher berechnen

Calculation for digitized areas

Green – vegetation water needs

Blue – water available from runoff (streets, roofs, gray water)

Daten - herunterladen

Eine CSV-Datei mit den Bewässerungsdaten der ausgewählten Vegetationsflächen (bw_gruen_raster_17_04_2023_7_19_53.csv) wurde auf dem Server erstellt.

Jahresverlauf als Grafiken anzeigen

Zum herunterladen bitte auf ok klicken.

OK

bgtool.terragis.net/tmp/bw_gruen_raster_17_04_2023_7_19_53.csv

Fläche (Polygon) erstellen zur Berechnung (Grün oder Blau)
 Punktberechnung (Grün - Wasserbedarf Vegetation)

Grün - Berechnung für das Jahr 2022 (Wetter trocken) 🗸

Summen für letzte Gebietsberechnung - Blau

Straßenabfluß in m³: 36953 Straßenfläche Dachabfluß in m³: 22603 Dachfläche in

Summen für letzte Gebietsberechnung

Jährliche Bewässerungsmenge (I): 88877

Speicher berechnen

Bewaesserung L pro Tag

Jahresverlauf Auswahl

Histogram for digitized areas

Irrigation needs over the year

Precipitation

An interactive web based tool for integration of urban Green and Blue Infrastructure

Web Tool Wasserhaushalt Blau-Grüne Infrastrukturen

×

Ok

TERRA GIS INTERESS-I Info Blau Grün

Fläche (Polygon) erstellen zur Berechnung (Grün oder Blau)
 Punktberechnung (Grün - Wasserbedarf Vegetation)

Grün - Berechnung für das Jahr 2022 (Wetter trocken) 🗸

 Summen für letzte Gebietsberechnung - Blau

 Straßenabfluß in m³: 36953
 Straßenfläche in m²: 56503

 Dachabfluß in m³: 22603
 Dachfläche in m²: 34561

Summen für letzte Gebietsberechnung - Grün Jährliche Bewässerungsmenge (I): 96452061 (~96452 m³)

Berechnung für Punkt 9.19099,48.7898

Speicher berechnen

N155

Soil Water Holding Capacity (% full)

Web Tool Wasserhaushalt Blau-Grüne Infrastrukturen

<figure><figure><figure>

An interactive web based tool for integration of urban Green and Blue Infrastructure

Hackstraße

Fläche (Polygon) erstellen zur Berechnung (Grün oder Blau)
 Punktberechnung (Grün - Wasserbedarf Vegetation)

Grün - Berechnung für das Jahr 2022 (Wetter trocken) 🗸

 Summen für letzte Gebietsberechnung - Blau

 Straßenabfluß in m³: 42178
 Straßenfläche in m²: 64492

 Dachabfluß in m³: 21655
 Dachfläche in m²: 33111

Summen für letzte Gebietsberechnung - Grün Jährliche Bewässerungsmenge (I): 87923122 (~87923 m³)

Speicher berechnen

IIIIII - IS E MARTIN

Web Tool Wasserhaushalt Blau-Grüne Infrastrukturen

Calculation of water storage

water storage in m³ over the year

Wasserspeicher für Grün/Blau Gebietekombination

Tage Anzahl Speicher (L) Speicher (m³)

8	0	47680653	47681	
9	0	46972856	46973	
10	0	46705040	46705	
11	0	46006808	46007	
12	0	45509437	45509	
13	0	45318141	45318	
14	0	25174619	25175	
15	0	25002453	25002	
16	0	-1	0	
17	0	-1	0	
18	0	-1	0	
19	0	-1	0	
20	0	-1	0	
21	0	-1	0	

Ok

Contactkarsten@terragis.netToolhttp://bgtool.terragis.net

Literature

- H.G. Schwarz-v.Raumer, T. Jaworski, R.Schenk, K.
 Vennemann (2023): Integration of urban Green and Blue Infrastructure by an interactive and geo-spatial Webmap-Tool. Journal of Digital Landscape Architecture. 8-2023.
- ALB (ed.) (2020): Watering by the rules water requirements of urban green spaces. ALB advisory leaflet bef7- Issue 1 - 5/2020. Freising, Germany

Next Steps

Fall 2023: apply for grant by the city of Stuttgart:

Citizen science project to recommend irrigation amounts for your garden. Including soil texture test, soil moisture sensors and an app to recommend irrigation water amounts based on weather forecast.

