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Geospatial/point-referenced data
Data: 

-  : locations


-  : observed response


-  : explanatory variables


{(Yi, Xi, si) : i = 1,…, n}
S = (s1, s2, …, sn)
Y = (y (s1), y (s2), …, y (sn))
X = (x (s1), x (s2), …, x (sn))
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Geospatial/point-referenced data
Data: 

-  : locations


-  : observed response


-  : explanatory variables


Objectives:

• Understand relationship between  and .

• Inference on spatial structure.

• Predict at a new location .

{(Yi, Xi, si) : i = 1,…, n}
S = (s1, s2, …, sn)
Y = (y (s1), y (s2), …, y (sn))
X = (x (s1), x (s2), …, x (sn))

X Y

s0
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How do we currently model this?
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Classical solution: Ordinary Least Square Regression (OLS)
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Classical solution: Ordinary Least Square Regression (OLS)


Doesn’t account for spatial effect.

How do we currently model this?

Y (s) = X (s) β + ϵ (s)

Linear Covariate 
effect White noise

Usually modeled 
with N (0,τ2)
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Account for spatial error: Linear Mixed Model (LMM)


How do we currently model this?

Y (s) = X (s) β + ϵ (s) + W (s)

Linear Covariate 
effect White noise
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Account for spatial error: Linear Mixed Model (LMM)


How do we currently model this?

Y (s) = X (s) β + ϵ (s) + W (s) Spatial random 
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Account for spatial error: Linear Mixed Model (LMM) with GP


How do we currently model this?

Y (s) = X (s) β + ϵ (s) + W (s) Spatial random 
effect

Usually modeled 
with Gaussian 
Process (GP)

Linear Covariate 
effect White noise
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How do we estimate this?
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Maximum Likelihood Estimation


      
Likelihood (y) ∝ Σ
− 1

2 exp {(y − Xβ)⊤ Σ−1 (y − Xβ)}
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Maximum Likelihood Estimation


      
Likelihood (y) ∝ Σ
− 1

2 exp {(y − Xβ)⊤ Σ−1 (y − Xβ)}
τ2I+C

Spatial 
error

White 
noise

How do we estimate this?
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Maximum Likelihood Estimation
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Dense
n × n
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Maximum Likelihood Estimation


      
Likelihood (y) ∝ Σ
− 1

2 exp {(y − Xβ)⊤ Σ−1 (y − Xβ)}
 

Dense
n × n

. Infeasible in large data!!!O (n3)

What can go wrong?
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Maximum Likelihood Estimation


      
Likelihood (y) ∝ Σ
− 1

2 exp {(y − Xβ)⊤ Σ−1 (y − Xβ)}

How do we propose to solve this?

Σ−1 Cholesky= ×

Dense

“everything is related to everything else, but 
near things are more related than distant 
things.”
For any location, only consider its 
correlation with its  nearest neighbors!!m

O (n3)
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Maximum Likelihood Estimation


      
Likelihood (y) ∝ Σ
− 1

2 exp {(y − Xβ)⊤ Σ−1 (y − Xβ)}

How do we propose to solve this?

Σ−1 Cholesky= ×

Dense

“everything is related to everything else, but 
near things are more related than distant 
things.”
For any location, only consider its 
correlation with its  nearest neighbors!!m

O (n3)

NN + GP
Datta A et al. Hierarchical nearest-neighbor Gaussian 
process models for large geostatistical datasets. JASA. 2016.
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Maximum Likelihood Estimation


      
Likelihood (y) ∝ Σ
− 1

2 exp {(y − Xβ)⊤ Σ−1 (y − Xβ)}

How do we propose to solve this?

Σ−1 Cholesky= ×

Dense
O (n3)

≈ ×
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BRISC
BRSIC implements this in R, a wrapper around C++ code. 


Embarrassingly parallel computation!
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Inference
Significant improvement over state-of-the-art algorithms. 


Training data ~ 105K


Test data ~ 45K
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Inference
Significant improvement over state-of-the-art algorithms. 


Training data ~ 105K


Test data ~ 45K


Classical methods do not work!!


        NNGP with Bayesian (Datta et al.)


        NNGP with BRISC


Saha A, Datta A. BRISC: Bootstrap for rapid inference on spatial covariances. 
Stat. 2018;7(1):e184.
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Inference
• Estimation:
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• Uncertainty (via bootstrap): 
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Inference
• Estimation: 


• Uncertainty (via bootstrap): 


• Prediction: 

Prediction Location Prediction X
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Simulating from Gaussian Process 
Simulating LARGE data from Gaussian Process is computationally challenging. 
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Probit Model
Estimates parameters by maximizing likelihood with a grid search.
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Probit Model
Estimates parameters by maximizing likelihood with a grid search.


TLR = Low rank approximation of covariance matrix. 
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Probit Model
Estimates parameters by maximizing likelihood with a grid search.


TLR = Low rank approximation of covariance matrix. 


Saha A et al. Scalable Predictions for Spatial Probit Linear Mixed Models Using Nearest 
Neighbor Gaussian Processes. Journal of Data Science. 2022.
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Probit Model
Estimates parameters by maximizing likelihood with a grid search.


Likelihood evaluation for estimation: 
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Probit Model
Estimates parameters by maximizing likelihood with a grid search.


Likelihood evaluation for estimation: 


Prediction: 


Tutorial: https://github.com/ArkajyotiSaha/probit-NNGP-code
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Applications of BRISC
• nn-SVG : Identifies of spatially variable genes transcriptomics data with BRISC.
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• nn-SVG : Identifies of spatially variable genes transcriptomics data with BRISC.


• RF-GLS : 


Fits Random Forest in spatially dependent data. 

Rewrite the split criteria as a Generalized Least Square (GLS) Loss.

Y (s) = X (s) β + ϵ (s) + W (s)
f (X)

Continuous Outcome: Saha A et al. Random forests for spatially dependent 
data. JASA. 2023.

Binary Outcome: Saha A, Datta A. Random forests for binary geospatial 
data. arXiv preprint arXiv:2302.13828. 2023

Package: Saha A et al. RandomForestsGLS: An R package for Random 
Forests for dependent data. Journal of Open Source Software. 2022

Applications of BRISC
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