CUGOS, 2023 Spring Fling

Arkajyoti Saha, April 21, 2023 University of Washington Department of Statistics

Spatial Inference with R-package BRISC

Outline

- What problem does BRISC solve?
- What can you do with BRISC?
- Applications of BRISC.

Outline

- What problem does BRISC solve?
- What can you do with BRISC?
- Applications of BRISC.

Geospatial/point-referenced data

Data: {
$$(Y_i, X_i, s_i)$$
 : $i = 1, ..., n$ }
- $\mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2, ..., \mathbf{s}_n)$: locations
- $\mathbf{Y} = (y(\mathbf{s}_1), y(\mathbf{s}_2), ..., y(\mathbf{s}_n))$:
- $\mathbf{X} = (\mathbf{x}(\mathbf{s}_1), \mathbf{x}(\mathbf{s}_2), ..., \mathbf{x}(\mathbf{s}_n))$:

observed response

explanatory variables

Geospatial/point-referenced data

Data: {
$$(Y_i, X_i, s_i)$$
 : $i = 1, ..., n$ }
- $\mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2, ..., \mathbf{s}_n)$: locations
- $\mathbf{Y} = (y(\mathbf{s}_1), y(\mathbf{s}_2), ..., y(\mathbf{s}_n))$:
- $\mathbf{X} = (\mathbf{x}(\mathbf{s}_1), \mathbf{x}(\mathbf{s}_2), ..., \mathbf{x}(\mathbf{s}_n))$:

<u>Objectives:</u>

- Understand relationship between X and Y. •
- Inference on spatial structure.
- Predict at a new location s_0 .

observed response

explanatory variables

Classical solution: Ordinary Least Square Regression (OLS)

 $Y(s) = X(s)\beta + \epsilon(s)$

Classical solution: Ordinary Least Square Regression (OLS)

 $Y(s) = X(s)\beta + \epsilon(s)$

Classical solution: Ordinary Least Square Regression (OLS)

 $Y(s) = X(s)\beta + \epsilon(s)$

Classical solution: Ordinary Least Square Regression (OLS)

 $Y(s) = X(s)\beta + \epsilon(s)$

Classical solution: Ordinary Least Square Regression (OLS)

 $Y(s) = X(s)\beta + \epsilon(s)$

Linear Covariate effect

Doesn't account for spatial effect.

Account for spatial error: Linear Mixed Model (LMM)

Account for spatial error: Linear Mixed Model (LMM)

Linear Covariate effect

Spatial random effect

Account for spatial error: Linear Mixed Model (LMM) with GP

Maximum Likelihood Estimation

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \left\{ \right.$$

Maximum Likelihood Estimation

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \left\{ \right.$$

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \left\{ \right.$$

What can go wrong?

Maximum Likelihood Estimation

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \left\{ \right.$$

What can go wrong?

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \left\{ \right.$$

What can go wrong?

Maximum Likelihood Estimation

Likelihood
$$(\mathbf{y}) \propto |\mathbf{\Sigma}|^{-\frac{1}{2}} \exp \left\{ (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} \widehat{\boldsymbol{\Sigma}}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \right\}$$

$$n \times n$$
Dense

$$O(n^3)$$
. Infeas

sible in large data!!!

7

Maximum Likelihood Estimation

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \left\{ \right.$$

Maximum Likelihood Estimation

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \left\{ \left\{ \sum_{k=1}^{\infty} \left\{ \sum_{k=1}^{$$

Maximum Likelihood Estimation

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp\left\{$$

$$\Sigma^{-1} \stackrel{Cholesky}{=}$$
 ×

Maximum Likelihood Estimation

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \left\{ \left\{ \sum_{k=1}^{\infty} \left\{ \sum_{k=1}^{$$

Maximum Likelihood Estimation

Likelihood
$$(\mathbf{y}) \propto |\mathbf{\Sigma}|^{-\frac{1}{2}} \exp\left\{ (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} (\mathbf{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \right\}$$

"everything is related to everything else, but near things are more related than distant things."

For any location, only consider its correlation with its *m* nearest neighbors!!

Maximum Likelihood Estimation

Likelihood
$$(\mathbf{y}) \propto |\mathbf{\Sigma}|^{-\frac{1}{2}} \exp\left\{ (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} (\mathbf{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \right\}$$

"everything is related to everything else, but near things are more related than distant things."

For any location, only consider its correlation with its *m* nearest neighbors!! NN + GP

Datta A et al. Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets. JASA. 2016. 8

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \left\{ \left\{ \sum_{k=1}^{\infty} \left\{ \sum_{k=1}^{$$

 $\left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\right)^{\mathsf{T}} \mathbf{\Sigma}^{-1} \left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\right) \right\}$ \approx X

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \left\{ \left\{ \sum_{k=1}^{\infty} \left\{ \sum_{k=1}^{$$

Likelihood (y)
$$\propto |\Sigma|^{-\frac{1}{2}} \exp \{$$

BRISC

BRSIC implements this in R, a wrapper around C++ code. **

Embarrassingly parallel computation! Package 'BRISC'

Type Package
Title Fast Inference for Large Spatial Datas
Version 1.0.5
Maintainer Arkajyoti Saha <arkajyotisa< td=""></arkajyotisa<>
Author Arkajyoti Saha [aut, cre], Abhirup Datta [aut], Jorge Nocedal [ctb], Naoaki Okazaki [ctb], Lukas M. Weber [ctb]
Depends R (>= 3.3.0), RANN, parallel, star pbapply, graphics
Description Fits bootstrap with univariate sence on Spatial Covariances (BRISC) cesses detailed in Saha and Datta (201

October 12, 2022

sets using BRISC

aha93@gmail.com>

ats, rdist, matrixStats,

spatial regression models using Bootstrap for Rapid Inferfor large datasets using nearest neighbor Gaussian pro-8) <doi:10.1002/sta4.184>.

Outline

- What problem does BRISC solve?
- What can you do with BRISC?
- Applications of BRISC.

Training data ~ 105K

Test data ~ 45K

Training data ~ 105K

Test data ~ 45K

Classical methods do not work!!

Training data ~ 105K

Test data ~ 45K

Classical methods do not work!!

NNGP with Bayesian (Datta et al.)NNGP with BRISC

- Training data ~ 105K
- Test data ~ 45K

Classical methods do not work!!

NNGP with Bayesian (Datta et al.)

NNGP with BRISC

Stat. 2018;7(1):e184.

Estimation: estimation_result <- BRISC_estimation(coords, y, x)

- Estimation: estimation_result <- BRISC_estimation(coords, y, x)
- Uncertainty (via bootstrap): BRISC_bootstrap(estimation_result)

- Estimation: estimation_result <- BRISC_estimation(coords, y, x)
- Uncertainty (via bootstrap): BRISC_bootstrap(estimation_result)
- Prediction: BRISC_prediction(estimation_result, coords_pred, x_pred)

- Estimation: estimation_result <- BRISC_estimation(coords, y, x)
- Uncertainty (via bootstrap): BRISC_bootstrap(estimation_result)
- Prediction: BRISC_prediction(estimation_result, coords_pred, x_pred)

Simulating LARGE data from Gaussian Process is computationally challenging.

Simulating LARGE data from Gaussian Process is computationally challenging.

Simulate from NNGP with BRISC: BRISC_simulation(coords)

Simulating LARGE data from Gaussian Process is computationally challenging. Simulate from NNGP with BRISC: BRISC_simulation(coords)

Full GP

Simulating LARGE data from Gaussian Process is computationally challenging. Simulate from NNGP with BRISC: BRISC_simulation(coords)

Full GP

Sample size	NNGP	full GP
1000	0.7(0.04)	2.6(0.08)
2500	1.6(0.29)	31.8(2.02)
5000	3.3(0.25)	262.3 (9.33)
10000	8.3(0.23)	NA
100000	121.5 (9.53)	NA

750

1000

Estimates parameters by maximizing likelihood with a grid search.

Estimates parameters by maximizing likelihood with a grid search.

Methods	$n = 15^2$	$n = 25^2$	$n = 50^2$	$n = 100^2$
(a) Grid search for	one parameter comb	ination		
probit-NNGP	0.065	0.5	9	166
TLR	0.57	2.9	28	187
(b) Prediction at or	e out-of-sample loca	ation following estim	nation	
probit-NNGP	< 0.01	< 0.01	< 0.01	0.025
TLR	1.2	5.8	40	271
LR = Low rank a	approximation of	covariance mati	rix.	

Estimates parameters by maximizing likelihood with a grid search.

Methods	$n = 15^2$	$n = 25^2$	$n = 50^{2}$	$n = 100^2$
(a) Grid search for	one parameter comb	oination		
probit-NNGP	0.065	0.5	9	166
TLR	0.57	2.9	28	187
(b) Prediction at or	e out-of-sample loca	ation following estim	ation	
probit-NNGP	< 0.01	< 0.01	< 0.01	0.025
TLR	1.2	5.8	40	271

TLR = Low rank approximation of covariance matrix.

Saha A et al. Scalable Predictions for Spatial Probit Linear Mixed Models Using Nearest Neighbor Gaussian Processes. Journal of Data Science. 2022.

Estimates parameters by maximizing likelihood with a grid search.

Likelihood evaluation for estimation: <a>[llk_binary <- Binary_estimation(coords, y)

Estimates parameters by maximizing likelihood with a grid search.

Prediction: Binary_prediction(llk_binary, coords_pred)

Likelihood evaluation for estimation: <a>[llk_binary <- Binary_estimation(coords, y)

Estimates parameters by maximizing likelihood with a grid search.

Prediction: Binary_prediction(llk_binary, coords_pred)

Tutorial: <u>https://github.com/ArkajyotiSaha/probit-NNGP-code</u>

Outline

- What problem does BRISC solve?
- What can you do with BRISC?
- Applications of BRISC.

- RF-GLS: $Y(s) = X(s)\beta + \epsilon(s) + W(s)$

- RF-GLS : $Y(s) = X(s)p + \epsilon(s) + W(s)$

- RF-GLS: $Y(s) = X(s)p + \epsilon(s) + W(s)$ f(X)Fits Random Forest in spatially dependent data.

- nn-SVG : Identifies of spatially variable genes transcriptomics data with BRISC.
- RF-GLS: $Y(s) = X(s)p + \epsilon(s) + W(s)$ f(X)Fits Random Forest in spatially dependent data.
 - Rewrite the split criteria as a Generalized Least Square (GLS) Loss.

- nn-SVG : Identifies of spatially variable genes transcriptomics data with BRISC.
- RF-GLS: $Y(s) = X(s)p + \epsilon(s) + W(s)$ Fits Random Forest in spatially dependent data. Rewrite the split criteria as a Generalized Least Square (GLS) Loss.

- RF-GLS: $Y(s) = X(s)p + \epsilon(s) + W(s)$ Fits Random Forest in spatially dependent data. Rewrite the split criteria as a Generalized Least Square (GLS) Loss.

nn-SVG : Identifies of spatially variable genes transcriptomics data with BRISC.

<u>Continuous Outcome</u>: Saha A et al. Random forests for spatially dependent data. JASA. 2023.

- RF-GLS: $Y(s) = X(s)p + \epsilon(s) + W(s)$ Fits Random Forest in spatially dependent data. Rewrite the split criteria as a Generalized Least Square (GLS) Loss.

data. JASA. 2023.

- <u>Continuous Outcome</u>: Saha A et al. Random forests for spatially dependent
- <u>Binary Outcome</u>: Saha A, Datta A. Random forests for binary geospatial data. arXiv preprint arXiv:2302.13828. 2023

- RF-GLS: $Y(s) = X(s)p + \epsilon(s) + W(s)$ Fits Random Forest in spatially dependent data. Rewrite the split criteria as a Generalized Least Square (GLS) Loss.

data. JASA. 2023.

- <u>Continuous Outcome</u>: Saha A et al. Random forests for spatially dependent
- <u>Binary Outcome:</u> Saha A, Datta A. Random forests for binary geospatial data. arXiv preprint arXiv:2302.13828. 2023
- Package: Saha A et al. RandomForestsGLS: An R package for Random Forests for dependent data. Journal of Open Source Software. 2022

Acknowledgements

Abhirup Datta Biostatistics, BSPH, JHU

Sumanta Basu Statistics & Data Science, Cornell